Sequence and Tree Kernels with Statistical Feature Mining

نویسندگان

  • Jun Suzuki
  • Hideki Isozaki
چکیده

This paper proposes a new approach to feature selection based on a statistical feature mining technique for sequence and tree kernels. Since natural language data take discrete structures, convolution kernels, such as sequence and tree kernels, are advantageous for both the concept and accuracy of many natural language processing tasks. However, experiments have shown that the best results can only be achieved when limited small sub-structures are dealt with by these kernels. This paper discusses this issue of convolution kernels and then proposes a statistical feature selection that enable us to use larger sub-structures effectively. The proposed method, in order to execute efficiently, can be embedded into an original kernel calculation process by using sub-structure mining algorithms. Experiments on real NLP tasks confirm the problem in the conventional method and compare the performance of a conventional method to that of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolution Kernels with Feature Selection for Natural Language Processing Tasks

Convolution kernels, such as sequence and tree kernels, are advantageous for both the concept and accuracy of many natural language processing (NLP) tasks. Experiments have, however, shown that the over-fitting problem often arises when these kernels are used in NLP tasks. This paper discusses this issue of convolution kernels, and then proposes a new approach based on statistical feature selec...

متن کامل

Credit Card Fraud Detection using Data mining and Statistical Methods

Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...

متن کامل

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

Graph Mining with Variational Dirichlet Process Mixture Models

Graph data such as chemical compounds and XML documents are getting more common in many application domains. A main difficulty of graph data processing lies in the intrinsic high dimensionality of graphs, namely, when a graph is represented as a binary feature vector of indicators of all possible subgraph patterns, the dimensionality gets too large for usual statistical methods. We propose a no...

متن کامل

Eigen-analysis of nonlinear PCA with polynomial kernels

There has been growing interest in kernel methods for classification, clustering and dimension reduction. For example, kernel Fisher discriminant analysis, spectral clustering and kernel principal component analysis are widely used in statistical learning and data mining applications. The empirical success of the kernel method is generally attributed to nonlinear feature mapping induced by the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005